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Abstract 

A mathematical analysis of the evaluation of the 
absorption-correction factors in convex polyhedral 
crystals is made. Formulae are given that permit the 
exact evaluation of the factors and their derivatives 
and that do not depend on the subdivision of the 
crystal into tetrahedra. A new method of defining the 
Howells polyhedra as the included volume of a set 
of planes is also described. The method allows addi- 
tional constraints to be introduced, which could be 
used to deal with inhomogeneities in either the crystal 
or the incident beam. Computation based on these 
ideas gives rapid and exact evaluation of both the 
absorption-correction factor and its derivatives, with 
negligible rounding-error problems. In addition, a 
formula is given for scattering by a general tetrahe- 
dron with a wide range of orientations that can be 
used as a test of computer programs. 

Introduction 

The transmission (or absorption-correction) factor of 
a multifaceted crystal has been found in the past 
either by a numerical method (Busing & Levy, 1957; 
Hamilton, 1963) or by subdivision of the crystal into 
elemental tetrahedra (de Meulenaer & Tompa, 1965) 
and analytic evaluation of the absorption over a 
tetrahedron. Similar methods that use triangles and 
parallelograms have been used in the case of two- 
dimensional crystals (Howells, 1950; Braibanti & 
Tiripicchio, 1965). The two techniques have been 
compared many times, most recently by Blanc, 
Schwarzenbach & Flack (1991). In principle, the 
analytic method should give an exact answer but the 
subdivision into tetrahedra leads to problems with 
rounding errors and to extended computing time for 
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multifaceted crystals. The rounding-error problems 
have been largely overcome by the improvements 
suggested by Alcock (1970, 1974) and by Blanc, 
Schwarzenbach & Flack (1991). Nevertheless, the 
subdivision into tetrahedra is totally unnecessary 
because analytic expressions for the transmission fac- 
tor can be found for any simple shape. In this paper, 
mathematical expressions are provided that avoid this 
unnecessary subdivision. All that is required is the 
evaluation of geometric factors for the edges of each 
Howells polyhedron. In addition, a method of finding 
these edges is described that results in an unam- 
biguous determination of each edge. The expressions 
given in this paper allow the volume of the whole 
crystal and that of each of the Howells polyhedra to 
be evaluated separately. 

This paper is divided into three sections. The first 
section derives the mathematical expressions. The one 
following that explains how the concept of the 
included volume of a set of planes can be used to 
simplify the definitions of the Howells polyhedra. 
Finally, a simple way of deriving the transmission 
factors for crystals that each consist of a single 
Howells polyhedron is given. 

The transmission factor 

The transmission factor is defined by 

T = V -1 ~" dr exp [-/zL(r)], (1) 
v 

where L(r) is the total path length within the crystal 
of a ray that is scattered once at r. Because L(r) is a 
linear function of the scattering position r, one can 
write 

-/zL(r) = - ~ ( a  • r+ c) (2) 
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and T = V -~ exp (- /zc) / ,  reducing the problem to the 
evaluation of the integral 

I = ~ d~ exp ( - / z a .  r). (3) 
v 

Because the path L(r) depends on both the distance 
from the face of the crystal through which the ray 
entered and the distance from that through which it 
leaves, the crystal has to be subdivided into polyhedra 
(the Howells polyhedra) over which the vector a is a 
constant. If the emerging ray is reversed then a single 
Howells polyhedron is that volume which is 'lit' 
through single faces by both the incident beam (beam 
l) and the reversed scattered beam (beam 2). When 
these two beams have directions given by unit vec- 
tors tl and t2 and each crystal face is defined by 
n'r = D (where n is the outward normal to the face 
and D = n" r0, with ro any point on the face) then it is 
straightforward to show that the constants in (2) are 

aii = nj/(ni- t,) + n J  (nj- t2), 
(4) 

c u = - D , / ( n j -  t , ) -  O i/(n j • t2). 

Here, the subscript i refers to the crystal face 
through which beam 1 enters and the subscript j to 
that through which beam 2 enters. 

In the mathematics that follow we shall consider 
only one Howells polyhedron and, for clarity, drop 
the subscripts i and j. We shall also let - / z a = b .  

Gauss's theorem, 

I V.udV=~u-ndS, (5) 
v s 

with u = b e x p  (b- r ) ,  allows us to re-express the 
integral over the volume of each polyhedron (over 
which b is constant, by definition) as an integral over 
the faces of that polyhedron. 

I = J" exp (b.  r) d r  
v 

= ( 1 / b 2 ) ~ n k . b  ~ exp (b.  r) dS, (6) 
k Sk 

where the sum is over all faces of the polyhedron and 
nk is the outward normal to the kth face. In addition, 
we can reduce the integral over each face by using a 
companion theorem to Stokes's theorem, 

~Vxu.ndS=~u.dl. (7) 
s 

This is obtained by putting u = gr(r)e, where e is any 
constant vector, and is 

n x V ~  d S =  ~ ~ dl. (8) 
s C 

With ~ = e x p  (b" r), 

I exp ( b . r )  d l = ( n x b )  I e x p ( b . r )  dS, 
C S 

(9) 

o r  

J" e x p ( b ' r ) d S = ( n x b ) / l n x b l  2. j e x p ( b . r ) d l .  
s c 

(lO) 

Finally, the line integral round the perimeter C of 
the face S may be expressed as a sum over the edges 
of the face. 

exp (b.  r) dl = ~ ,~2 exp (b- r) di, (11) 
C j r j l  

where rj] and rj2 are the vertices at the ends of edge 
j. Because the line along edge j  is r =  rj~ + A(rj2-rj l) ,  

ri2 exp (b" r) dl=dj i exp (b- r j, + Adj-) dA 
rj  t 0 

= (dJb. dj)[exp (b. rj2) 

- e x p  (b- rj,)], (12) 

where dj = r2 j -  r u. The integral I is now reduced to 
a sum of terms evaluated over the edges of the poly- 
hedron. 

l=Znk'b/(b21nkXbl 2) Y (nk, b, d:)/b • d: 
k j 

x [exp (b" r j 2 ) - exp  (b • rj,)], (13) 

where (n, b, d) is the triple scalar product n x b-  d and 
the sum over k is over all faces. The sum over j is 
round the perimeter of each face in the usual anti- 
clockwise direction around the outward normal to 
the face. 

In the above, we have assumed that b 2, In k X b[ 2 
and b.dj  are not zero. We now consider these three 
special cases, which are, of course, precisely the three 
special cases that led de Meulenaer & Tompa (1965) 
to introduce their function h(u). 

(a) b 2= O. If b is a null vector, then either/z = 0 
or the path length, L(r), is constant over the whole 
polyhedron. The latter will occur whenever ni = - n j  
and n:t~ =nj't2, i.e. the two crystal faces defining 
the polyhedron are parallel and the angles the two 
beams make with the faces are equal. In this case, 

J e x p [ - t z L ( r ) ] d r = e x p ( - t z c )  ~ dr 
v v 

= exp (-/zc) V.. (14) 

The volume V of any polyhedron can be expressed 
as a sum over the edges of the polyhedron by repeating 
the above analysis with u = r/3 in Gauss's theorem 
and u = n x r in Stokes's theorem. This gives 

V = (1/6) E Y. nk " Rj(nk, Rj, dfl, (15) 
k j  

where Rj = (1/2)(rj2+rjl) is the midpoint of edge j. 
With the properties of the triple scalar product and 
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the equation n k "  r = Dk defining face k, this can be 
re-expressed more simply as 

V=(1/6)Y.  YDk(nk, rj,,rj2). (16) 
k j 

(b) nk x b =  0. This will occur if L(r) is constant 
over the whole of face k of the polyhedron. Then, 
for any point ro on the face, 

exp ( b - r )  dS 
s 

= exp (b- to) multiplied by the area of face k 

= Y. (1/2)(nk, rj~, rs2) exp (b " rs~). (17) 
J 

(c) b .  dj = 0. This occurs if L(r) is constant along 
edge j, then 

~ exp (b • r) dl = exp (b • rj~) dj. (18) 

Note that on a face for which nk X b = 0, necessarily 
b • dj = 0 over all its edges. 

Because each edge will be counted twice if the sum 
is taken round the perimeters of all faces, it is better 
to rearrange the sum as a sum over all edges taken 
only once. This leads to the final expression for T, 
which can be summarized as follows: 

Let n, and n2 be the unit normals to two faces that 
intersect at an edge and D~ and D2 be the constants 
associated with these two faces. Let rl and r2 be the 
vertices at the ends of the edge, ordered such that 
d = r2-r~ is parallel to n~ x n=. Then 

T= (1/ V) ~, {(1/ p.)Plf, exp [-/zL(r~)] 

-(1//z)P2f2 exp [-/zL(r2)]}, (19) 

where the sum is taken over all edges of each Howells 
polyhedron and over all the polyhedra. The geometric 
factors f and the powers p are given by: 

(i) if a 2 = 01 p, = P 2  = 0 ,  

fl  = (1/6)D~(n,,  r~, r=), 
(20) 

f2 = (1/6)D2(nz, r , ,  r2); 

(ii) if a .  d = 0, p, = P2 = 2, 

n t ' a  (n,, a, d) 
fl  = (1 /a  2) In, x a l  2 

n 2 . a  (n2, a, d), 
f2 = ( l /a2) in2 x al2 

unless either (a) In~ x al 2 = 

f~=-(1/2a2)(n,  

or (b) In2 x al 2 = 0 when P2 

0 when p~ = 1 and 

• a)[(nl ,  r,, r2)] 

= 1 and 

f2 = - (1 /2a2 )  (n2 • a)(n2, r l ,  r2); 

(21) 

(22) 

(iii) otherwise, p~ =P2 = 3 and 

fm = (1 / a2){[ (nl" a ) / I n l  x a12][ (nl, a, d ) / ( a -  d)] 

- [(n2 • a)/In2 x al2][(n2, a, d) / (a  • d)]} (23) 

A=f ,  
Note that, in (23), d could be replaced by n~ x n2 

and f~ and f2 made demonstrably independent of the 
vertices rl and r2. This, together with the simple result 
of de Meulenaer & Tompa (1965) for a tetrahedron, 
leads one to suspect that an equally simple result akin 
to theirs could be found if the sum over edges were 
replaced by a sum over vertices. Note that, for compu- 
tational purposes, this is a retrograde step because 
of the special cases arising from constant L(r). Edges 
are much more easily handled than vertices when 
computing T. However, for completeness, one can 
point out that after a little vector algebra we can show 
from (23) that there will be a term of the form 

( d l ,  d2,  d3) 
(1//x 3) ~-~-~--~2~-~- 3 exp [ - /zL(r) ] ,  (24) 

provided AL, the change in L(r) over an edge, is 
nonzero on three edges that meet at a vertex r. This 
is the result used by de Meulenaer & Tompa (1965). 

Derivatives of T 

As pointed out by J. S. Reid (private communication),  
the analytic expression for T allows the derivatives 
of T with respect to /z to be evaluated in a similar 
manner. 

(dT/dl .~)=-(1/V)  ~ [{(1//z)P'fl exp [ - p L ( r , ) ]  

x[(p, / tx)+ L(rl)] 

- (1 //z)P2f2 exp [-/zL(r2) ] 

x [ (p2 / tz )+  L ( r 2 ) ] } ] .  (25) 

Thus, the absorption weighted mean path length, 

T= - (1 /T) (dT /d t z ) ,  (26) 

can be calculated with minimum extra effort along 
with T once the edges of the Howells polyhedron 
have been defined. Higher derivatives can also be 
found if required. 

Blanc, Schwarzenbach & Flack (1991) have given 
expressions for derivatives of T with respect to 
changes in the distance dj of the j th  crystal face from 
the origin. Because their expressions are in terms of 
the integrals of exp [ - /zL(r ) ]  over individual Howells 
polyhedra and over the j th  face of the crystal, it is 
clear that they also can be calculated by the above 
method. 

The Howells polyhedra as included volumes 

When a computer program is constructed to evaluate 
the transmission factor, the Howells polyhedra have 
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to be clearly defined. We have found that the concept 
of the included volume of a set of planes is simple, 
unambiguous and gives directly the required edges 
and vertices. 

Any plane n .  r = D divides space into two regions: 
(i) the included region, that part of space in which 
( n .  r - D )  is negative; and (ii) the excluded region, 
that part in which (n.  r - D )  is positive. The origin, 
for example, is included if D is positive and excluded 
if D is negative. With the usual definition of outward- 
going normals, a given crystal volume is that region 
of space not excluded by any member of the set of 
planes that combine to make up its faces. Other planes 
added to this set may or may not exclude it. A crystal 
in a laboratory is the included volume of the set of 
planes that contains the crystal faces and the walls 
of the laboratory. It is excluded by any set containing 
the walls of the laboratory next door - provided, of 
course, that the normals to the walls point outward 
from the room enclosed. 

Viewed in this manner, any one Howells polyhe- 
dron is the included volume of the set of planes made 
up of (a) the planes that define the faces of the crystal; 
(b) the planes parallel to t~ that outline the face 
through which beam 1 passes - the shadows of the 
edges round that face with normals outward from the 
face; and (c) the planes parallel to t2 that outline the 
face through which beam 2 passes. An included 
volume of this total set will only be nonzero if the 
two parts of the beams so defined meet inside the 
crystal. If an included volume does exist, it is one of 
the Howells polyhedra. 

The edges of the polyhedron are found by consider- 
ing the line of intersection between any pair of planes 
in the set and the points where this line meets the 
other planes in the set. Any such point will be a vertex 
of the polyhedron only if, for all planes in the set, 
( n - r - D )  < - 0. Otherwise this point is excluded by 
some planes of the set. 

If, for any line of intersection, two such points are 
found, then the line is an edge of the included volume 
and the two points are the associated vertices. Care 
must be taken to order r~ and r 2 SO that (r2-r~) is 
parallel to n~ x n2. Once this is done, the factors 
f l , f2 ,  Pl, P2, L(rl) and L(r2) required for the evalu- 
ation of T can be calculated directly. 

Despite the simplicity of the above method of 
defining the Howells polyhedra, some precautions 
must be taken in defining the set of planes. No two 
planes can be either identical or face to face (i.e. 
n 1 = --!12 and Dt = -D2).  In the former case, any edge 
will be counted twice as 'not excluded' by either plane. 
In the latter, no included volume is possible, but the 
program will spend time computing zero. Such 'ghost" 
volumes should be eliminated. Finally, a common 
line of intersection between three planes, if not 
excluded by another member of the set of planes, will 
be counted three times (as the 'edge' defined by three 

different pairs of planes) and, similarly, one common 
to four planes will be counted six times. A simple 
algorithm to see which pair of planes (of three) is the 
pair that defines the edge of the included volume and 
which plane is merely another plane through this edge 
follows. 

Let n~, n2 and n3 be the normals to three planes 
with a common line. 

Define a l = ( n l  xn2) ' (nl  x n 3 )  and ~ 2 = ( n 2 x n 3 )  • 

(n  I × n3) and determine whether a~ and te 2 are pos- 
itive or negative. 

The following chart shows which plane of the three 
is not  a face of the included volume: 

a~ a2 Plane not required 

+ + 2 
+ - -3 
- + 1 
- - No included volume possible. 

Many of the above points have been made in 
different forms by Blanc, Schwarzenbach & Flack 
(1991). However, they construct a list of edges for 
each polyhedron because they then have to divide it 
up into elementary irregular tetrahedra. As shown 
above, this is not necessary and, once any edge is 
found from the set of planes, the required factors can 
immediately be evaluated. 

The concept of the included volume of a set of 
planes makes it easy to introduce further constraints 
on the Howells polyhedra. The incident beam may 
be restricted so that, instead of the whole of the crystal, 
only a small section of it is illuminated. It is easy to 
add to the set of planes that defines the included 
volume of the Howells polyhedra, the set that deter- 
mines the outline of the incident beam. This will be 
further discussed in a subsequent paper (Clark & 
Reid, in preparation). 

Limitation of the beam size could be used to over- 
come inhomogeneities in the beam (Markov, Fetsov 
& Zhukov, 1990) or in the crystal itself. 

S t a n d a r d  tests  

Alcock (1974), Cahen & Ibers (1972) and Flack, 
Vincent & Alcock (1980) have emphasized the need 
for standard tests. The easiest tests to apply are those 
of Cahen & Ibers but unfortunately their formulae 
do not test the terms with factors/z -3 above, or the 
dependence on 20. Equation (19) is an analytic 
expression for T and is perfectly feasibly evaluated 
by hand in simple cases but, for a tetrahedron with 
the particular beam directions that imply that the 
whole tetrahedron is a single Howells polyhedron, 
the transmission factor can be deduced from general 
considerations alone. Using these, we can give an 
analytic expression for scattering by a tetrahedron 
A B C D .  If the directions of the incident beam and the 
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scattered beam are such that both beams pass through 
face ABC, say, the transmission factor is 

T = 6{(1/2tzfl) - (1 /2/32)  

+(1/Iza/33)[1-exp(-tz/3)]}, (27) 

where/3 is the path length L(ro). 
The above result could be derived from (19) to (23) 

but is more simply derived from the following argu- 
ment. There is only one effective length in the prob- 
lem, namely/3. T must be a function of/z/3 as it is 
dimensionless. In order that it tends to zero as /x 
tends to oo, T must be expressible in terms of 
exp (-/z/3) and powers of (/x/3) -1. With (24), the 
coefficient of exp (-/xfl) is (/xfl)-3. No powers of 
(/z/3) -~ higher than three will enter in any other term. 
Because T tends to 1 as/x tends to 0, it can only be 
of the form 

3!(tzfl)-a[1-H, fl +(1/2)p, ZflE-exp (-ixfl)]. (28) 

This is the expression we have given above. Note that 
(27) is correct only if the beams pass in and out of 
a single face. Simple forms could be derived for other 
configurations. 

A similar argument applies to two-dimensional 
shapes, leading to the form 

-2[(tx/3)-2[1-1xfl-exp (-tzfl)]. (29) 

A special case of this result is one of the test 
formulae of Cahen & Ibers (1972). Note, however, 
that their result is for fixed angles of the incident and 
scattered beams, while (27) and (29) apply to all 
angles and crystal orientations for which both beams 
pass through a single face. If D is taken as the origin 
and n4 and D4 describe face ABC,/3 is given by 

/3 : -D4[(n4 • tl)-1 -F (n4 • t2)-l]. (30) 

Concluding remarks 

We have shown how to calculate transmission factors 
and their derivatives analytically without subdividing 
the Howells polyhedra into tetrahedra. The computa- 
tional method, based on the idea of these polyhedra 
as the included volumes of sets of well defined planes, 
is fast, efficient and accurate. The calculation of the 
geometric factors need only be performed once for 
each orientation of the crystal. Thereafter, a single 
sum over terms gives the transmission factor for any 
value of tz very quickly. 

The reader may note that the method applied above 
to integrate exp (-/xL) over the crystal volume can 
equally well be applied to any function of L, f (L) ,  
which can be written as the third derivative of another 
function, g(L). This allows a simple check on the 
accuracy of any computer program because g(L)= 
L3/6 generates the volume of the crystal using the 
same factors f~, f2, Pl, P2 etc. that are used to find the 

transmission factor. The result can be compared with 
the volume calculated independently using (16). In 
all tests of a program making this comparison (Clark 
& Reid, in preparation), the two results differ only 
in the 14th decimal place. Another consequence is 
that any g(L) whose third derivative is exp (- /zL) 
can be used to find the transmission factor. A better 
g(L) than that used in the above analysis is 

g(L)=[1/ ( - i~)  3] 

x [ e x p ( - t z L ) - l + t z L - ( 1 / 2 ) ( l x L ) 2 ] ,  (31) 

which does not diverge as/z--> 0. This form of g(L) 
gives greater accuracy of T and T for small /z. Full 
details will be given in the subsequent paper (Clark 
& Reid, in preparation). 

The number of geometric factors that have to be 
calculated depends on the number of faces of the 
crystal that are lit by the two beam directions. An 
estimate can be made in the case of a crystal with 
many faces. A crystal with f faces will have e edges, 
where 3f/2 <- e <- 3 ( f -  2). When f is large, the mean 
number of edges per face is close to its maximum 
value, six, so each Howells polyhedron will average 
12 faces and approximately 30 edges. Because the 
number of polyhedra will be about ½(0) 2, an estimate 
of the number of edges for which geometric factors 
have to be found is 4 f  2. The number of points that 
must be checked to find the edges of the Howells 
polyhedra in principle increases rapidly for large f 
because every polyhedron is defined by a set contain- 
ing at least f planes and the vertex of every triplet of 
planes in the set has to be found. However, a large 
proportion of these triplets can be flagged as meeting 
outside the crystal and, therefore, not computed more 
than once. Elimination of the division of each polyhe- 
dron into tetrahedra followed by the calculation of 
results for each of these achieves considerable savings 
in computing time and storage. Separation out of the 
/z dependence in the calculation means that the 
geometric factors do not have to be re-evaluated for 
different values of/x, so wavelength dependence in 
/x can be easily handled. Restrictions on the incident- 
beam shape can also be accommodated. 

I am indebted to Dr J. S. Reid for drawing my 
attention to this problem and for stimulating and 
informative discussions, and to the staff of the Physics 
Unit at Aberdeen University, in which this research 
commenced. 
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Abstract 

This paper describes a computational method for the 
determination of all possible phonon modes in 
framework crystal structures that leave the funda- 
mental structural units (tetrahedra and octahedra) 
undistorted. Such rigid-unit modes (RUMs) are prime 
candidates as soft modes for displacive phase transi- 
tions, such as in the perovskite structure, and this 
computational method can be used to rationalize the 
phase transitions in any framework structure. The 
method has been programmed for general use. The 
RUM approach is illustrated by consideration of the 
perovskite, quartz and cristobalite structures. 

1. The concept of rigid-unit modes 

Many silicate crystal structures are composed of SiO4 
tetrahedra that are linked to other tetrahedra by 
corner-sharing oxygen atoms to give a semi-infinite 
framework connectivity. Quartz is one well known 
example of what we call a framework structure. Such 
framework structures are not confined to silicates: 
AIPO4 and As205 are examples of nonsilicate 
framework structures. Many framework structures 
are found to undergo displacive phase transitions 
(Carpenter, 1988; Salje, 1988). In some respects this 
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might seem to be counter-intuitive, because Si-O 
bonds are strong and the tetrahedra are difficult to 
distort. However, such phase transitions can occur 
without any significant distortions of the SiO4 
tetrahedra. Quartz is a good example of this (Megaw, 
1973; Grimm & Dorner, 1975; Boysen, Dorner, Frey 
& Grimm, 1980; Berge, Baccheimer, Dolino, Vallade 
& Zeyen, 1985; Vallade, Berge & Dolino, 1992). The 
high-temperature (/3) phase of quartz (Fig. l a )  has 
hexagonal symmetry and the low-temperature (a)  
phase (Fig. 1 b) has trigonal symmetry. In the quartz 
structure, the SiO4 tetrahedra are connected as linked 
spirals and at the phase transition the spirals are 
distorted by rotations and displacements of the 
tetrahedra. M egaw (1973) has discussed the structures 

(a) (b) 

Fig. 1. (a) Projection of the hexagonal phase of quartz down [001 ], 
in which the SiO4 tetrahedra are shown as shaded units. (b) 
Projection of the trigonal phase of quartz down [001]. 
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